Journal of Organometallic Chemistry, 93 **(1975)** *253-257 0* **Elsevier Sequoia S-A., Lausanne - Printed in The Netherlands**

SYNTHESIS OF ARYL- AND VINYL-SUBSTITUTED ACETYLENE DERIVATIVES BY THE USE OF NICKEL AND PALLADIUM COMPLEXES

L. CASSAR

Research Center, Monfedison. Nouara (Italy) **(Received January l?th, 1975:**

Summary

Acetylene or monosubstituted acetylenes are converted into aryl- and vinyl-substituted acetylene derivatives by reaction with aryl and vinyl halides in the presence of a nickel or palladium triarylphcsphine complex along with a base_ With the palladium triphenylphosphine complexes the conversion can be carried out catalytically under mild conditions.

Aryl iodides are known to react with cuprous acetylides in refluxing pyridine [l] to give arylacetylenic compounds according to eqn. 1. This reaction

ArI + CuC=CR + ArC=CR + CuI (1)

occurs with aromatic iodides or activated bromides and requires a stoichiometric quantity of cuprous acetylide [23.

We describe here our studies directed towards finding a catalytic system which would allow the formation of arylacetylenes from aryl halides under mild conditions.

Results and discussion

We have found a new acetylenic substitution reaction of aromatic and vinylic halides based on the use of nickel(O) or palladium(O) triphenylphosphine complexes under mild conditions_ With triphenylphosphinepalladium complexes the reaction proceeds catalytically_

The acetylenic substitution of aryl and vinyl halides by triphenylphosphinenickel(0) complexes involves two steps (eqns. 2 and 3). The first step

$$
A r X + Ni[P(C_6H_5)_3]_3 \rightarrow Ni(Ar)X[P(C_6H_5)_3]_2 + P(C_6H_5)_3
$$
\n
$$
Ni(Ar)X[F(C_6H_5)_3]_2 + C_6H_5C=CH + NaOCH_3 \rightarrow Arc=CC_6H_5 + NaX + CH_3OH
$$
\n
$$
Ni[P(C_6H_5)_3]_2
$$
\n(3)

was described in previous papers [31. The second step proceeds almost quan- *(continued on p. 256)*

:

:_

 $\label{eq:2} \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{$

' Dlmcthylformamldc 20 ml In each experiment. " P(C&)3 (0.6 mmol) was oddcd. ' Yield dctermlned by VPC,

255
...

 $\frac{1}{2}$

titatively at room temperature. The acetylenic nickel complex is easily decomposed with aqueous hydrochloric acid to give the free acetylenic compound and **nickel(H) salt.**

We were not able to base a catalytic process on these reactions probably because coordination of acetylenic compounds to nickel lowers its ability to undergo oxidative addition_ However, use of tetrakis(triphenylphosphine) palIadium(0) does provide a catalytic process (eqn. 4):

$$
ArX + RC=CH + NaOCH3 \xrightarrow{Pd_1P(C_6H_5)314} ArC=CR + NaX + CH3OH
$$
 (4)

A variety of aromatic and vinylic halides were treated with acetylenic compounds in the presence of catalytic amounts of $Pd[P(C₆H₅)₃]_4$ in dimethylfor**mamide- Some palladium(H) compounds can also be used, but are probably reduced to Pd" complexes under the reaction conditions.**

A base, such as sodium methoxide or sodium phenoxide, is necessary for the reaction (Table 1). Triarylphosphines are much more effective than trialkyl**phosphines, as observed in the catalytic cyanation of aryl halides 143** _ **Both elkyl- and aryl-acetyienic compounds can be used.**

The rate of formation of acetylenic compounds is influenced by the nature of the substituents on the aryl halides and by the identity of the halide leaving group-

We have measured relative rates of formation of the acetylenic compounds by carrying out competitive reactions with pairs of aryl halides- We found that p-bromobenzonitrile was 100 times and p-bromoanisole 0.29 times as reactive **as bromobenzene- Moreover iodobenzene was 700-800 times as reactive as bromobenzene and p-bromobenzonifxile 400 times as reactive as p-chloroben**zonitrile. The influence of substituents and of the halide leaving group is quali**tativeIy similar to that found in the oxidative addition of Pd[P(C,Hs),], to aryl halides [51. Heck reported similar results in the case of palladium-catalyzed carbalkoxylation of aryl halides [6]** _

The reaction is probably a multi-step process, involving initial oxidative addition of the triarylphosphinepalladium to the aryl halide (eqn. 5):

$$
P(C_6H_5)_3
$$

ArX + Pd[P(C_6H_5)_3]_4 → Ar-Pd-X + 2 P(C_6H_5)_3 (5)

$$
P(C_6H_5)_3
$$

The arylpalladium(I1) complex then reacts with the acetylide anion produced by interaction of the acetylene with the base (methoxide, phenoxide):

$$
RC=CH + NaOCH_3 \xrightarrow{DMF} RC=CC^-Na^+ + CH_3OH
$$
 (6)

$$
\Pr{C_6H_5}_3
$$
\n
$$
Ar\text{-}Pd-X + RC \equiv C^- \rightarrow \left[\begin{array}{c} P(C_6H_5)_3 \\ X \\ Ar-Pd \leq C \equiv CR \end{array}\right] \rightarrow ArC \equiv CR + X^-
$$
\n
$$
P(C_6H_5)_3
$$
\n
$$
P(C_6H_5)_3
$$
\n
$$
(7)
$$

$$
\text{ArC}^{\text{=CR}}_{\text{i}} + P(C_6H_5)_3 \ge \text{ArC}^{\text{=CR}} + \text{Pd}[P(C_6H_5)_3]_3 \tag{8}
$$
\n
$$
\text{Pd}[P(C_6H_5)_3]_2
$$

256

This mechanism is analogous to that proposed for the cyanation [4] of aryl halides, since $RC \equiv C^-$ is formally isoelectronic to CN^- .

A less likely alternative mechanism would involve insertion of the acetylene into the Pd-Ar bond, followed by base-catalyzed elimination of HX.

The difference in the behaviour of nickel and palladium complexes is of interest_ Two main factors operate: (a) acetylenic compounds give stronger bonds with nickel(O) than with palladium(O) complexes [71, and the nickel complexes would be too stable to display catalytic activity; (b) palladium complexes with π -acceptor ligands generally dissociate more easily than the corre**sponding nickel complexes [81, to give rise to coordinatively-unsaturated species which may be more reactive_**

Experimental

All reagents were commercially available and used without further purification. Palladium and nickel complexes were prepared by published procedures [3]. All reactions were carried out under nitrogen.

General procedure for the synthesis of acetylene compounds

The acetylenic reagent, organic halide, catalyst, base and dimethylformamide were placed under nitrogen in a 100 ml flask equipped with a magnetic stirrer. The mixture was stirred at the temperature indicated in Table 1, and then cooled, diluted with water (100 ml) and extracted with diethyl ether (30 ml X 3) The ethereal extract was washed with water, dried with sodium sulfate and evaporated under reduced pressure_ Acetylenic compounds were purified by distillation or sublimation_

The identities of the products were confirmed spectroscopically, (IR, NMR, mass spectra) and where appropriate comparison was made with authentic **samples. Yields reported in Table 1 were determined by VPC with an internal standard.**

References

- **1 C-E. Castro. E-3. Gaughan and D.C. Owsley. J. Org. Chem.. 31<1966) 4071.**
- **2 T.F. Rutledge. Acetylenic Compounds. Reinhold. New York. 1968. p. 84.**
- **3 <a) M. Hidai. T_ Kashiwagi. T. Ikeuchi and Y. Uchida. J. OrganometaL Chera. 30 (1971) 279.** (b) D.R. Fahey, Organometal. Chem. Rev., 7 (1972) 245. **cc) M. Foa and L. cassar. in press.**
- **4 L. Cassar. S. Ferrara and M_ Foa. Adv. Chem. Ser.. 132 (1974) 252.**
- **5 P. Fitton and E-A. Rick. J_ OrganometaL Chem., 28 <1971) 287.**
- **6 A. Shoenberg. I. Bztoletti and R-F_ Heck. J. Org. Chem_. 39 (1974) 3318.**
- 7 E.Q. Greaves, C.J.L. Lock and P.M. Maitlis, Can. J. Chem., 46 (1968) 3879.
- **8 C-A. Tolmsn. W-C. Seidel and D-H_ Gerlach. J. Ames_ Chem_ Sot.. 94 (1972) 2669.**